Preferências de funcionalidades de aplicativos de smartphone para a atividade física em adultos brasileiros com baixa aptidão cardiorrespiratória
DOI:
https://doi.org/10.12820/rbafs.30e0401Palavras-chave:
Atividade física, Aplicativos móveis, Smartphone, Telessaúde, Aptidão cardiorrespiratória, Doença crônicaResumo
Objetivo: Identificar as preferências de funcionalidades de aplicativos de smartphones para atividade física em adultos com baixa aptidão cardiorrespiratória (ACR). Método: Avaliamos as preferências por meio de um questionário dividido nos seguintes tópicos: Pessoal/individualizado, Treinamento, Desempenho, Aspecto Social, Feedback, Motivação, Sugestões e Outros. Os participantes foram submetidos a um teste de exercício cardiopulmonar e espirometria para obtenção do consumo máximo de oxigênio (VO máx), capacidade vital forçada e volume expiratório forçado no 1s. As preferências foram comparadas entre participantes com baixa ACR (primeiro tercil) e regular/boa ACR (segundo e terceiro tercis). Resultados: Somente 17% dos adultos com baixa ACR referiram uso de aplicativos. “Monitorar a velocidade, tempo, distância, gasto de energia, frequência cardíaca e altitude”, “Monitorar o próprio progresso com gráficos e tabelas”, “Receber feedback sobre meu desempenho”, “Receber sugestões para execução da atividade”, “Receber sugestões para prevenção de lesões” e “Ter acesso à previsão do tempo” foram as funcionalidades mais populares entre o grupo com baixa ACR (81-93%). Contudo, funcionalidades a exemplo de “Compartilhar meus dados com outro perfil ou dispositivo personalizado”, “Competir com amigos”, “Compartilhar atividades por meio de redes sociais”, “Ser capaz de visualizar atividades dos outros e fornecer feedback”, “Ser parte de uma comunidade” e “Monitorar o percurso percorrido” foram menos prevalentes entre os adultos com baixa ACR (31, 17, 34, 22, 50 e 78%, respectivamente), i.e., reportado por menos do que 80% dos participantes. Conclusão: Conforme esperado, menos de um quinto dos adultos com baixa ACR são usuários de aplicativos. Dentre as funcionalidades comumente presentes em aplicativos, as mais populares entre o grupo de baixa ACR foram o monitoramento tanto do treinamento quanto do desempenho e o recebimento de feedback e sugestões.
Downloads
Referências
1. Carter DD, Robinson K, Forbes J, Hayes S. Experiences of mobile health in promoting physical activity: A qualitative systematic review and meta-ethnography. PLoS One. 2018; 13(12):e0208759.
2. Sama PR, Eapen ZJ, Weinfurt KP, Shah BR, Schulman KA. An Evaluation of Mobile Health Application Tools. JMIR Mhealth Uhealth. 2014;2(2):e19.
3. Murnane EL, Huffaker D, Kossinets G. Mobile health apps: Adoption, adherence, and abandonment. UbiComp ISWC 2015 - Proc. 2015 ACM Int. Jt. Conf. Pervasive Ubiquitous Comput. Proc. 2015 ACM Int Symp Wearable Comput. 2015;261–64.
4. Sun RT, Han W, Chang HL, Shaw MJ. Motivating Adherence to Exercise Plans Through a Personalized Mobile Health App: Enhanced Action Design Research Approach. JMIR Mhealth Uhealth. 2021;9(6):e19941.
5. Ross R, Blair SN, Arena R, Church TS, Després JP, Franklin BA, et al. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement From the American Heart Association. Circulation. 2016;134(24):e653–e699.
6. Evenson KR, Goto MM, Furberg, RD. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int J Behav Nutr Phys Act. 2015;18:12:159.
7. Mercer K, Giangregorio L, Schneider E, Chilana P, Li M, Grindrod K. Acceptance of Commercially Available Wearable Activity Trackers Among Adults Aged Over 50 and With Chronic Illness: A Mixed-Methods Evaluation. JMIR Mhealth Uhealth. 2016;4(1)e7.
8. Silva AG, Simões P, Queirós A, Rodrigues M, Rocha NP. Mobile Apps to Quantify Aspects of Physical Activity: a Systematic Review on its Reliability and Validity. J. Med. Syst. 2020;44(2):51.
9. Ummels D, Beekman E, Theunissen K, Braun S, Beurskens AJ. Counting Steps in Activities of Daily Living in People With a Chronic Disease Using Nine Commercially Available Fitness Trackers: Cross-Sectional Validity Study. JMIR Mhealth Uhealth. 2018;6(4):e70.
10. Yerrakalva D, Yerrakalva D, Hajna S, Griffin S. Effects of Mobile Health App Interventions on Sedentary Time, Physical Activity, and Fitness in Older Adults: Systematic Review and Meta-Analysis. J Med Internet Res. 2019;21(11):e14343.
11. Hodkinson A, Kontopantelis E, Adeniji C, van Marwijk H, McMillian B, Bower P, et al. Interventions Using Wearable Physical Activity Trackers Among Adults With Cardiometabolic Conditions: A Systematic Review and Meta-analysis. JAMA Netw Open. 2021;4(7):e2116382.
12. Zhang M, Wang W, Li M, Sheng H, Zhai Y. Efficacy of Mobile Health Applications to Improve Physical Activity and Sedentary Behavior: A Systematic Review and Meta-Analysis for Physically Inactive Individuals. Int J Environ Res Public Health. 2022;19(8):4905.
13. Oliveira MR, Sudati IP, Konzen VM, de Campos AC, Wibelinger LM, Correa C, et al. Covid-19 and the impact on the physical activity level of elderly people: A systematic review. Exp Gerontol. 2022;159:111675.
14. Panicker RM, Chandrasekaran B. “Wearables on vogue”: a scoping review on wearables on physical activity and sedentary behavior during COVID-19 pandemic. Sport Sci Health. 2022;18(3):641-57.
15. Yang Y, Koenigstorfer J. Determinants of physical activity maintenance during the Covid-19 pandemic: a focus on fitness apps. Transl Behav Med. 2020;10(4):835-42.
16. Parker K, Uddin R, Ridgers ND, Brown H, Veitch J, Salmon J, et al. The Use of Digital Platforms for Adults’ and Adolescents’ Physical Activity During the COVID-19 Pandemic (Our Life at Home): Survey Study. J Med Internet Res. 2021;23(2):e23389.
17. Jackson AS, Sui X, Hébert JR, Church TS, Blair SN. Role of Lifestyle and Aging on the Longitudinal Change in Cardiorespiratory Fitness. Arch Intern Med. 2009;169(19):1781-7.
18. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301(19):2024-35.
19. Lang JJ, Prince SA, Merucci K, Cadenas-Sanchez C, Chaput JP, Fraser BJ, et al. Cardiorespiratory fitness is a strong and consistent predictor of morbidity and mortality among adults: an overview of meta-analyses representing over 20.9 million observations from 199 unique cohort studies. Br J Sports Med. 2024;58(10):556-566.
20. Singh B, Cadenas-Sanchez C, Costa BGG, Castro-Piñero J, Chaput JP, Cuenca-García M, et al. Comparison of objectively measured and estimated cardiorespiratory fitness to predict all-cause and cardiovascular disease mortality in adults: A systematic review and meta-analysis of 42 studies representing 35 cohorts and 3.8 million observations. J Sport Health Sci. 2024;14:100986.
21. Carroll JK, et al. Who Uses Mobile Phone Health Apps and Does Use Matter? A Secondary Data Analytics Approach. J Med Internet Res. 2017;19(4):e125.
22. Knitza J, Simon D, Lambrecht A, Raab C, Tascilar K, Hagen M, et al. Mobile Health Usage, Preferences, Barriers, and eHealth Literacy in Rheumatology: Patient Survey Study. JMIR Mhealth Uhealth. 2020;8(8):e19661.
23. Sun L, Wang Y, Greene B, Xiao Q, Jiao C, Ji M, et al. Facilitators and barriers to using physical activity smartphone apps among Chinese patients with chronic diseases. BMC Med Inform Decis Mak. 2017;17(1):44. 0
24. de Sousa TLW, Ostoli TLVDP, Sperandio EF, Arantes RL, Gagliardi ART, Romiti M, et al. Dose-response relationship between very vigorous physical activity and cardiovascular health assessed by heart rate variability in adults: Cross-sectional results from the EPIMOV study. PLoS One. 2019;14(1):e0210216.
25. Gonze BB, Padovani RDC, Simoes MDS, Lauria V, Proença NL, Sperandio EF, et al. Use of a Smartphone App to Increase Physical Activity Levels in Insufficiently Active Adults: Feasibility Sequential Multiple Assignment Randomized Trial (SMART). JMIR Res Protoc. 2020;9(10):e14322.
26. Miller MR, Hankinson JATS, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319-38.
27. Wasserman K, Hansen JE, Sue DY, Stringer WW, Sietsema KE, Sun XG, Whipp BJ. Principles of Exercise Testing and Interpretation: Including Pathophysiology and Clinical Applications. 5th ed. Wolters Kluwer/Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2011.
28. Dallinga JM, Mennes M, Alpay L, Bijwaard H, Baart De La Faille-Deutekom M. App use, physical activity and healthy lifestyle: A cross sectional study. BMC Public Health. 2015;15:833.
29. Instituto Brasileiro de Geografia e Estatistica - IBGE. Pesquisa Nacional de Sáude - atenção primária. (2020).
30. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Departamento de Análise Epidemiológica e Vigilância de Doenças Não Transmissíveis. Vigitel Brasil 2023: vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico: estimativas sobre frequência e distribuição sociodemográfica de fatores de risco e proteção para doenças crônicas nas capitais dos 26 estados brasileiros e no Distrito Federal em 2023 [recurso eletrônico] / Ministério da Saúde, Secretaria de Vigilância em Saúde e Ambiente, Departamento de Análise Epidemiológica e Vigilância de Doenças Não Transmissíveis. – Brasília : Ministério da Saúde, 2023.
31. Chae J. A Comprehensive Profile of Those Who Have Health-Related Apps. Health Educ Behav. 2018;45(4):591-8.
32. Robbins R, Krebs P, Jagannathan R, Jean-Louis G, Duncan DT. Health App Use Among US Mobile Phone Users: Analysis of Trends by Chronic Disease Status. JMIR Mhealth Uhealth. 2017;5(12):e197.
33. Prevalence of active transportation among adults in Latin America and the Caribbean: a systematic review of population-based studies. Available from: <https://iris.paho.org/handle/10665.2/33966>.
34. Fukuoka Y, Lindgren T, Jong S. Qualitative exploration of the acceptability of a mobile phone and pedometer-based physical activity program in a diverse sample of sedentary women. Public Health Nurs. 2012;29(3):232-40.
35. Lindqvist AK, Rutberg S, Söderström E, Ek A, Alexandrou C, Maddison R, et al. User Perception of a Smartphone App to Promote Physical Activity Through Active Transportation: Inductive Qualitative Content Analysis Within the Smart City Active Mobile Phone Intervention (SCAMPI) Study. JMIR Mhealth Uhealth. 2020;8(8):e19380.
36. Kim H, Xie B. Health Literacy and Internet- and Mobile App-based Health Services: A Systematic Review of the Literature. Proc Assoc Inf Sci Technol. 2015;52:1-4.
37. Sardi L, Idri A, Fernández-Alemán JL. A systematic review of gamification in e-Health. J Biomed Inform. 2017;71:31-48.
38. Middelweerd A, van der Laan DM, van Stralen MM, Mollee JS, Stuij M, te Velde SJ, et al. What features do Dutch university students prefer in a smartphone application for promotion of physical activity? A qualitative approach. Int J Behav Nutr Phys Act. 2015;12:31.
39. Simmich J, Mandrusiak A, Russell T, Smith S, Hartley N. Perspectives of older adults with chronic disease on the use of wearable technology and video games for physical activity. Digit Health. 2021;7:20552076211019900.
40. Huang X, Zhu W, Gao X, Yu D, Jin H, Huang J, et al. Relationship Between Old-Aged Preferences Regarding Various Types of Physical Activity and Chronic Disease Status: A Cross-Sectional Study in Shanghai, China. Front Public Health. 2022;10:865328.
41. Hall AK, Cole-Lewis H, Bernhardt JM. Mobile text messaging for health: a systematic review of reviews. Annu Rev Public Health. 2015;36:393-415.
42. Kanstrup AM, Bertelsen P, Jensen MB. Contradictions in digital health engagement: An activity tracker’s ambiguous influence on vulnerable young adults’ engagement in own health. Digit Health. 2018;4:2055207618775192.
43. Li L, Peng W, Kononova A, Bowen M, Cotten SR. Factors Associated with Older Adults’ Long-Term Use of Wearable Activity Trackers. Telemed J E Health. 2020;26(6):769-75.
44. Akbar S, Coiera E, Magrabi F. Safety concerns with consumer-facing mobile health applications and their consequences: a scoping review. J Am Med Informatics Assoc. 2020;27(2):330-40.
45. Wattanapisit A, Kotepui M, Wattanapisit S, Crampton N. Bibliometric Analysis of Literature on Physical Activity and COVID-19. Int J Environ Res Public Health. 2022;19(12):7116.

Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Thatiane Lopes Valentim Di Paschoale Ostolin, Victor Zuniga Dourado

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Ao submeter um manuscrito à Revista Brasileira de Atividade Física & Saúde, os autores mantêm a titularidade dos direitos autorais sobre o artigo, e autorizam a Revista Brasileira de Atividade Física & Saúde a publicar esse manuscrito sob a Licença Creative Commons Atribuição 4.0 e identificá-la como veículo de sua publicação original.