Taxas de abandono em estudos controlados com exergames para gerenciamento da pressão arterial: protocolo de uma revisão sistemática e metanálise
DOI:
https://doi.org/10.12820/rbafs.27e0250Palavras-chave:
Pressão arterial, Pacientes desistentes do tratamento, Exercício físico, Atividade motora, ProtocolosResumo
Exergame, um tipo de videogame ativo divertido que combina esforço físico e jogo virtual, é uma inovação tecnológica que tem gerado informações importantes para a área da saúde. Na área cardiovascular, os exergames têm sido usados para gerenciar a pressão arterial em adultos, com alguns resultados positivos. Apesar disso, em estudos primários, é possível identificar que os participantes abandonaram (dropout) as intervenções dos exergames, mas nenhuma síntese de evidências foi produzida até o momento para explorar isso. Os objetivos desta revisão são i) estimar a taxa combinada de dropouts em estudos controlados que avaliam os efeitos de intervenções baseadas em exergame na pressão arterial de repouso em adultos e idosos; ii) comparar as taxas de dropouts entre os grupos exergame e controles e iii) investigar as características de intervenção associadas às taxas de dropouts. Serão incluídos ensaios clínicos randomizados (ECRs) ou quase-ECRs (≥ 4 semanas) avaliando efeitos de intervenções com exergames sobre a pressão arterial em repouso em adultos (≥ 18 anos). Não haverá restrição de idioma, data de publicação e ambiente de intervenção. As buscas na literatura serão conduzidas usando PubMed, Scopus, SPORTDiscus, Cumulative Index of Nursing and Allied Health Literature, Web of Science, Cochrane Central Register of Controlled Trials e Scientific Electronic Library Online. O risco de viés dos ECRs será avaliado por meio da ferramenta da Cochrane. Uma síntese narrativa descritiva e uma metanálise de modelo de efeitos aleatórios da taxa de eventos combinados (prevalência) serão fornecidas (p < 0,05). Este protocolo está registrado com PROSPERO: CRD42020199547.
Downloads
Referências
Oh Y, Yang S. Defining exergames & exergaming. In: Winn B, Heeter C, Games A, Watrall, Peng, W, et al. editors. Meaningful Play 2010 Conference Proceedings [Internet]. East Lansing (United States of America); 2010 Oct 10 [cited 2020 Aug 19]. p. 1–17. Available from: https://meaningfulplay.msu.edu/proceedings2010/
Kappen DL, Mirza-Babaei P, Nacke LE. Older Adults’ Physical Activity and Exergames: A Systematic Review. Int J Hum-Comput Int. 2018;35(2):140–67. DOI: https://doi.org/10.1080/10447318.2018.1441253
Brito-Gomes JLD, Perrier-Melo RJ, Brito ADF, Costa MDC. Active videogames promotes cardiovascular benefits in young adults? Randomized controlled trial. Rev Bras Ciênc Esporte. 2018;40(1):62–9. DOI: https://doi.org/10.1016/j.rbce.2018.01.002
Warburton DER, Bredin SSD, Horita LTL, Zbogar D, Scott JM, Esch BTA, et al. The health benefits of interactive video game exercise. Appl Physiol Nutr Metab. 2007;32(4):655–63. DOI: https://doi.org/10.1139/H07-038
Bird M-L, Clark B, Millar J, Whetton S, Smith S. Exposure to “Exergames” Increases Older Adults’ Perception of the Usefulness of Technology for Improving Health and Physical Activity: A Pilot Study. JMIR Serious Games. 2015;3(2):e8. DOI: https://doi.org/10.2196/games.4275
Moholdt T, Weie S, Chorianopoulos K, Wang AI, Hagen K. Exergaming can be an innovative way of enjoyable high-intensity interval training. BMJ Open Sport Exerc Med. 2017;3(1):e000258. DOI: https://doi.org/10.1136/bmjsem-2017-000258
Jenney CT, Wilson JR, Swanson JN, Perrotti LI, Dougall AL. Exergame Use as a Gateway to the Adoption of and Adherence to Sport-Specific and General Physical Activity: Exergame Use as a Gateway. J Appl Biobehav Res. 2013;18(4):198–217. DOI: https://doi.org/10.1111/jabr.12012
Santana M, Pina J, Duarte G, Neto M, Machado A, Dominguez-Ferraz D. Nintendo wii effects on cardiorespiratory fitness in older adults: A randomized clinical trial. a pilot trial. Fisioterapia. 2016;38(2):71–7. DOI: https://doi.org/10.1016/j.ft.2015.03.003
Kempf K, Martin S. Autonomous exercise game use improves metabolic control and quality of life in type 2 diabetes patients - a randomized controlled trial. BMC Endocr Disord. 2013;13(57):1–9. DOI: https://doi.org/10.1186/1472-6823-13-57
Guimarães AV, Barbosa AR, Meneghini V. Active videogame-based physical activity vs. Aerobic exercise and cognitive performance in older adults: A randomized controlled trial. J Phys Educ. 2018;18(1):203–9.
Nunan D, Aronson J, Bankhead C. Catalogue of bias: attrition bias. BMJ Evid Based Med. 2018;23(1):21–2. DOI: https://doi.org/10.1136/ebmed-2017-110883
Vancampfort D, Sánchez CPR, Hallgren M, Schuch F, Firth J, Rosenbaum S, et al. Dropout from exercise randomized controlled trials among people with anxiety and stress-related disorders: A meta-analysis and meta-regression. Journal Affect Disord. 2021;282:996–1004. DOI: https://doi.org/10.1016/j.jad.2021.01.003
Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1. DOI: https://doi.org/10.1186/2046-4053-4-1
Wolfenden L, Grimshaw J, Williams CM, Yoong SL. Time to consider sharing data extracted from trials included in systematic reviews. Syst Rev. 2016;5(185):1–3. DOI: https://doi.org/10.1186/s13643-016-0361-y
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. J Clin Epidemiol. 2009;62(10):1006–12. DOI: https://doi.org/10.1016/j.jclinepi.2009.06.005
Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page M, et al., editors. Cochrane Handbook for Systematic Reviews of Interventions. Version 6.2 [updated February 2021] [Internet]. The Cochrane Collaboration; 2021. Available from: www.training.cochrane.org/handbook
Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:j4008. DOI: https://doi.org/10.1136/bmj.j4008
Reljic D, Lampe D, Wolf F, Zopf Y, Herrmann HJ, Fischer J. Prevalence and predictors of dropout from high-intensity interval training in sedentary individuals: A meta-analysis. Scand J Med Sci Sports. 2019;29(9):1288–304. DOI: https://doi.org/10.1111/sms.13452
Fleiss L, Levin B, Paik MC. The Measurement of Interrater Agreement. In: Shewart WA, Wilks SS, editors. Statistical Methods for Rates and Proportions. 3rd ed. New Jersey: John Wiley & Sons, Inc; 2003. p. 598–626. DOI: https://doi.org/10.1002/0471445428.ch18
Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 12;355:i4919. DOI: https://doi.org/10.1136/bmj.i4919
Marshall IJ, Kuiper J, Wallace BC. RobotReviewer: evaluation of a system for automatically assessing bias in clinical trials. J Am Med Inform Assoc. 2016;23(1):193–201. DOI: https://doi.org/10.1093/jamia/ocv044
Pedder H, Sarri G, Keeney E, Nunes V, Dias S. Data extraction for complex meta-analysis (DECiMAL) guide. Syst Rev. 2016;5(212):1–6. DOI: https://doi.org/10.1186/s13643-016-0368-4
Centre for Reviews and Dissemination. Core principles and methods for conducting a systematic review of health interventions. In: Centre for Reviews and Dissemination, editor. CRD’s guidance for undertaking reviews in healthcare. 3rd ed. York: York Publ. Services; 2009. p. 281.
Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Chapter 13: Fixed-Effect Versus Random-Effects Models. In: Borenstein M, Hedges LV, Higgins JPT, Rothstein HR, editors. Introduction to Meta-Analysis. Chichester, UK: John Wiley & Sons, Ltd; 2009. p. 421.
Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statist Med. 2002;21(11):1539–58. DOI: https://doi.org/10.1002/sim.1186
Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Chapter 16: Identifying and Quantifying Heterogeneity. In: Borenstein M, Hedges LV, Higgins JPT, Rothstein HR, editors. Introduction to Meta-Analysis. Chichester, UK: John Wiley & Sons, Ltd; 2009. p. 421. DOI: https://doi.org/10.1002/9780470743386
Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34. DOI: https://doi.org/10.1136/bmj.315.7109.629
Sterne JA, Gavaghan D, Egger M. Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. J Clin Epidemiol 2000; 53: 1119–29. DOI: https://doi.org/10.1016/S0895-4356(00)00242-0
Duval S, Tweedie R. Trim and Fill: A Simple Funnel-Plot–Based Method of Testing and Adjusting for Publication Bias in Meta-Analysis. Biometrics. 2000;56(2):455–63. DOI: https://doi.org/10.1111/j.0006-341X.2000.00455.x
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Camilo Luis Monteiro Lourenço, Aline Rodrigues Barbosa, Vandrize Meneghini, Aline Mendes Gerage

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Ao submeter um manuscrito à Revista Brasileira de Atividade Física & Saúde, os autores mantêm a titularidade dos direitos autorais sobre o artigo, e autorizam a Revista Brasileira de Atividade Física & Saúde a publicar esse manuscrito sob a Licença Creative Commons Atribuição 4.0 e identificá-la como veículo de sua publicação original.