Geospatial indicators of bikeability index as cyclefriendly city design: a systematic review
DOI:
https://doi.org/10.12820/rbafs.27e0255Keywords:
Environment design, Built environment, Bicycling, Geographic information systemsAbstract
The aim was to identify the main geospatial indicators used in bikeability index through constructive methodological studies. The study protocol was registered in PROSPERO under the registration number CRD42020166795, following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guide. Original studies indexed in the electronic databases Lilacs, PubMed, Science Direct, Scopus, SPORTDiscus, Trid, and Web of Science were selected. The review also included grey literature through Google Scholar, OpenGrey, ProQuest, and a list of references and documents pointed out by experts. After removing duplicates and analyzing titles and abstracts, the review considered only 11 out of the 703 initial papers, which provided 100 environment indicators with varied definitions and metrics for estimating the Bikeability index. The census tract was the most used unit of the analysis found in the papers, which used GIS (Geographic Information System) data besides self-reported information on environmental characteristics. The results indicate that the most usual indicators relate to infrastructure – existence and width of bike lanes – destination, slope, speed limit, and connectivity and intersections. The creation and maintenance of bicycle-friendly environments could consider the implementation of more infrastructure on flat and connected streets with changes in speed limits in neighborhoods, especially in regions with low density of intersections, to decrease accidents and increase cyclists’ perception of safety.
Downloads
References
Mattioli G, Roberts C, Steinberger JK, Brown A. The political economy of car dependence: A systems of provision approach. Energy Res Soc Sci. 2020;66:101486. DOI: https://doi.org/10.1016/j.erss.2020.101486
Chillón P, Molina-García J, Castillo I, Queralt A. What distance do university students walk and bike daily to class in Spain. J Transp Heal.2016;3(3):315–20. DOI: https://doi.org/10.1016/j.jth.2016.06.001
Zhao X, Ke Y, Zuo J, Xiong W, Wu P. Evaluation of sustainable transport research in 2000–2019. J Clean Prod. 2020;256:120404. DOI: https://doi.org/10.1016/j.jclepro.2020.120404
Guzman LA, Arellana J, Alvarez V. Confronting congestion in urban areas: Developing Sustainable Mobility Plans for public and private organizations in Bogotá. Transp Res Part A Policy Pract. 2020;134 2019:321–35. DOI: https://doi.org/10.1016/j.tra.2020.02.019
Eren E, Uz VE. A review on bike-sharing: The factors affecting bike-sharing demand. Sustain Cities Soc. 2020;54:101882. DOI: https://doi.org/10.1016/j.scs.2019.101882
Dinu M, Pagliai G, Macchi C, Sofi F. Active commuting and multiple health outcomes: a systematic review and meta-analysis. Sport Med. 2019;49(3):437–52. DOI: https://doi.org/10.1007/s40279-018-1023-0
Hamer M, Chida Y. Active commuting and cardiovascular risk: A meta-analytic review. Prev Med (Baltim). 2008;46(1):9–13. DOI: https://doi.org/10.1016/j.ypmed.2007.03.006
Oja P, Titze S, Bauman A, de Geus B, Krenn P, Reger-Nash B, et al. Health benefits of cycling: A systematic review. Scand J Med Sci Sport. 2011;21(4):496–509. DOI: https://doi.org/10.1111/j.1600-0838.2011.01299.x
Wang G, Macera CA, Scudder-Soucie B, Schmid T, Pratt M, Buchner D. A cost-benefit analysis of physical activity using bike/pedestrian trails. Health Promot Pract. 2005;6(2):174–9. DOI: https://doi.org/10.1177/1524839903260687
McKim L. The economic geography of active commuting: Regional insights from Wellington, New Zealand. Reg Stud Reg Sci. 2014;1(1):88–95. DOI: https://doi.org/10.1080/21681376.2014.904597
Aldred R, Sharkey R. Healthy Streets: a Business View. 2018;1–48.
Nello-Deakin S, Harms L. Assessing the relationship between neighbourhood characteristics and cycling: Findings from Amsterdam. Transp Res Procedia. 2019;41(2018):17–36. DOI: https://doi.org/10.1016/j.trpro.2019.09.005
Gössling S, Choi AS. Transport transitions in Copenhagen: Comparing the cost of cars and bicycles. Ecol Econ. 2015;113:106–13. DOI: https://doi.org/10.1016/j.ecolecon.2015.03.006
Koning M, Conway A. The good impacts of biking for goods: Lessons from Paris city. Case Stud Transp Policy. 2016;4(4):259–68. DOI: https://doi.org/10.1016/j.cstp.2016.08.007
Handy S. Making US cities pedestrian- and bicycle-friendly. Transportation, land use, and environmental planning. Elsevier Inc.; 2019. 169–87. DOI: https://doi.org/10.1016/B978-0-12-815167-9.00009-8
Reis RS, Hino AAF, Parra DC, Hallal PC, Brownson RC. Bicycling and walking for transportation in three Brazilian cities. Am J Prev Med. 2013;44(2). DOI: https://doi.org/10.1016/j.amepre.2012.10.014
Mesa VG, Barajas DEP. Cali Bikeability Index Map: A tool for evaluating public investment and future needs. J Transp Geogr. 2013 4(1): 5–8.
Camargo EM. Barreiras e facilitadores para o uso de bicicleta em adultos na cidade de curitiba – um estudo com grupos [dissertação de mestrado]. Curitiba: Universidade Federal do Paraná; 2012.
Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015: Elaboration and explanation. BMJ. 2015;349 2014:1–25. DOI: https://doi.org/10.1136/bmj.g7647
Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):1–10. DOI: https://doi.org/10.1186/s13643-016-0384-4
Duncan MJ, Winkler E, Sugiyama T, Cerin E, Toit L, Leslie E, et al. Relationships of land use mix with walking for transport: do land uses and geographical scale matter? J Urban Health. 2010;87(5):782–95. DOI: https://doi.org/10.1007/s11524-010-9488-7
Ferrer ALC, Thomé AMT, Scavarda AJ. Sustainable urban infrastructure: A review. Resour Conserv Recycl. 2018;128:360–72. DOI: https://doi.org/10.1016/j.resconrec.2016.07.017
Saelens BE, Sallis JF, Frank LD. Environmental correlates of walking and cycling: findings from the transportation, urban design, and planning literatures. Annals of behavioral medicine. 2003;25(2):80-91. DOI: https://doi.org/10.1207/S15324796ABM2502_03
Sisson SB, Lee SM, Burns EK, Tudor-Locke C. Suitability of commuting by bicycle to arizona elementary schools. Am J Heal Promot. 2006; 20(3):210-3. DOI: https://doi.org/10.4278/0890-1171-20.3.210
Lowry M, Callister D, Gresham M, Moore B. Assessment of communitywide bikeability with bicycle level of service. Transp Res Rec. 2012 1;(2314):41–8. DOI: https://doi.org/10.3141/2314-06
McNeil N. Bikeability and the 20-min neighborhood: How infrastructure and destinations influence bicycle accessibility. Transp Res Rec. 2011 1;(2247):53–63. DOI: https://doi.org/10.3141/2247-07
Greenstein AS. Mapping bikeability: A Spatial analysis on current and potential bikeability in Austin , Texas. 2015.
Winters M, Brauer M, Setton EM, Teschke K. Mapping bikeability: A spatial tool to support sustainable travel. Environ Plan B Plan Des. 2013;40(5):865–83. DOI: https://doi.org/10.1068/b38185
Motta BG. A bikeability index for Curitiba (Brazil). University of Twente; 2017.
Krenn PJ, Oja P, Titze S. Development of a bikeability index to assess the bicycle-friendliness of urban environments. Open J Civ Eng. 2015;05(04):451–9. DOI: https://doi.org/10.4236/ojce.2015.54045
Grigore E, Garrick N, Fuhrer R, Axhausen IKW. Bikeability in Basel. Transp Res Rec. 2019;2673(6):607–17. DOI: https://doi.org/10.1177/0361198119839982
Rugtvedt JL. A dynamic scale approach for assessing bikeability with sensitivity for different user groups. Universität Salzburg; 2019.
Lin JJ, Wei YH. Assessing area-wide bikeability: A grey analytic network process. Transp Res Part A Policy Pract. 2018 1;113:381–96. DOI: https://doi.org/10.1016/j.tra.2018.04.022
Giles-Corti B, Vernez-Moudon A, Reis R, Turrell G, Dannenberg AL, Badland H, et al. City planning and population health: a global challenge. Lancet. 2016;388(10062):2912–24. DOI: https://doi.org/10.1016/S0140-6736(16)30066-6
Winters M, Brauer M, Setton EM, Teschke K. Built environment influences on healthy transportation choices: Bicycling versus driving. J Urban Health. 2010;87(6):969–93. DOI: https://doi.org/10.1007/s11524-010-9509-6
Titze S, Stronegger WJ, Janschitz S, Oja P. Association of built-environment, social-environment and personal factors with bicycling as a mode of transportation among Austrian city dwellers. Prev Med (Baltim). 2008;47(3):252–9. DOI: https://doi.org/10.1016/j.ypmed.2008.02.019
Moudon AV, Lee C. Walking and Bicycling: An evaluation of environmental audit instruments. Am J ofHealth Promot. 2003;18(1):21-37. DOI: https://doi.org/10.4278/0890-1171-18.1.21
Winter M. Improving public health through active transportation: understanding the influence of the built environment on decisions to travel by bicycle. University of British Columbia; 2011.
Kellstedt DK, Spengler JO, Foster M, Lee C, Maddock JE. A scoping review of bikeability assessment methods. J Community Health. 2020;(0123456789). DOI: https://doi.org/10.1007/s10900-020-00846-4
Lopes AAS, Hino AAF, Moura EN, Reis RS. The Geographic Information System in environment, physical activity and health researches. Rev Bras Ativ Fís Saúde. 2019;23:1–11. DOI: https://doi.org/10.12820/rbafs.23e0065
Silva ICM, Hino AA, Lopes A, Ekelund U, Brage S, Gonçalves H, et al. Built environment and physical activity: Domain-and activity-specific associations among Brazilian adolescents. BMC Public Health. 2017;17(1):1–11. DOI: https://doi.org/10.1186/s12889-017-4538-7
Camargo EM, Alberico CO, Lopes AAS, Schipperijn J RR. Characteristics of the built environment on GPS- determined bicycle routes used by adolescents. Rev Bras Ativ Fís Saúde. 2020;24(e0106):1–7. DOI: https://doi.org/10.12820/rbafs.24e0106
Cain KL, Geremia CM, Conway TL, Frank LD, Chapman JE, Fox EH, et al. Development and reliability of a streetscape observation instrument for international use: MAPS-global. Int J Behav Nutr Phys Act. 2018;15(1):1–11. DOI: https://doi.org/10.1186/s12966-018-0650-z
Mölenberg FJM, Panter J, Burdorf A, Van Lenthe FJ. A systematic review of the effect of infrastructural interventions to promote cycling: Strengthening causal inference from observational data. International Journal of Behavioral Nutrition and Physical Activity. BioMed Central Ltd.; 2019;16(1):1-31. DOI: https://doi.org/10.1186/s12966-019-0850-1
Weliwitiya H, Rose G, Johnson M. Bicycle train intermodality: Effects of demography, station characteristics and the built environment. J Transp Geogr. 2019;74 2018:395–404. DOI: https://doi.org/10.1016/j.jtrangeo.2018.12.016
Fitch DT, Handy SL. Road environments and bicyclist route choice: The cases of Davis and San Francisco, CA. J Transp Geogr. 2020;85:102705. DOI: https://doi.org/10.1016/j.jtrangeo.2020.102705
Ryus P, Vandehey M, Elefteriadou L, Dowling RG, Ostrom BK. Highway Capacity Manual 2010.
American Association of State Highway and Transportation Officials. Guide for the Development of Bicycle Facilities, 4th Edition, 2012.
Transportation Research Board. Multimodal Level of Service Analysis for Urban Streets. 2008.
Harkey DL, Reinfurt DW, Sorton A. The Bicycle Compatibility Index: a level of service concept, implementation manual. 1998. DOI: https://doi.org/10.3141/1636-03
Hoedl S, Titze S, Oja P. The Bikeability and Walkability evaluation table: Reliability and application. Am J Prev Med. 2010;39(5):457–9. DOI: https://doi.org/10.1016/j.amepre.2010.07.005
Wahlgren L, Schantz P. Bikeability and methodological issues using the active commuting route environment scale (ACRES) in a metropolitan setting. BMC Med Res Methodol. 2011;11(1):1-20. DOI: https://doi.org/10.1186/1471-2288-11-6
Winters M, Teschke K. Route preferences among adults in the near market for bicycling: Findings of the cycling in cities study. Am J Heal Promot. 2010;25(1):40–7. DOI: https://doi.org/10.4278/ajhp.081006-QUAN-236
Zhao P. The Impact of the Built Environment on Bicycle Commuting: Evidence from Beijing. Urban Stud. 2014;51(5):1019–37. DOI: https://doi.org/10.1177/0042098013494423
Cervero R, Duncan M. Walking, Bicycling, and Urban Landscapes: Evidence from the San Francisco Bay Area. Am J Public Health. 2003;93(9):1478–83. DOI: https://doi.org/10.2105/AJPH.93.9.1478
Cervero R, Sarmiento OL, Jacoby E, Gomez LF, Neiman A. Influences of built environments on walking and cycling: Lessons from Bogotá. Int J Sustain Transp. 2009;3(4):203-26. DOI: https://doi.org/10.1080/15568310802178314
Braun LM, Rodriguez DA, Cole-Hunter T, Ambros A, Donaire-Gonzalez D, Jerrett M, et al. Short-term planning and policy interventions to promote cycling in urban centers: Findings from a commute mode choice analysis in Barcelona, Spain. Transp Res Part A Policy Pract. 2016;89:164–83. DOI: https://doi.org/10.1016/j.tra.2016.05.007
Pikora T, Giles-Corti B, Bull F, Jamrozik K, Donovan R. Developing a framework for assessment of the environmental determinantsof walking and cycling. Soc Sci Med 56. 2003;56:1693–703. DOI: https://doi.org/10.1016/S0277-9536(02)00163-6
Wahlgren L, Schantz P. Exploring bikeability in a metropolitan setting: Stimulating and hindering factors in commuting route environments. BMC Public Health. 2012;12(1):168. DOI: https://doi.org/10.1186/1471-2458-12-168
Ma L, Dill J. Associations between the objective and perceived built environment and bicycling for transportation. J Transp Heal. 2015;2(2):248-55. DOI: https://doi.org/10.1016/j.jth.2015.03.002
Wang K, Akar G, Chen YJ. Bike sharing differences among Millennials, Gen Xers, and Baby Boomers: Lessons learnt from New York City’s bike share. Transp Res Part A Policy Pract. 2018;116:1–14. DOI: https://doi.org/10.1016/j.tra.2018.06.001
Kabak M, Erbaş M, Çetinkaya C, Özceylan E. A GIS-based MCDM approach for the evaluation of bike-share stations. J Clean Prod. 2018;201:49–60. DOI: https://doi.org/10.1016/j.jclepro.2018.08.033
Kaltenbrunner A, Meza R, Grivolla J, Codina J, Banchs R. Urban cycles and mobility patterns: Exploring and predicting trends in a bicycle-based public transport system. Pervasive Mob Comput. 2010;6(4):455–66. DOI: https://doi.org/10.1016/j.pmcj.2010.07.002
Wang L. The Relationship between the Neighborhood Built Environment and Active Transportation among Adults: A systematic literature review. 2017;1(3):29. DOI: https://doi.org/10.3390/urbansci1030029
Rybarczyk G. Examining the impact of urban morphology on bicycle mode choice. 2014;41:272–88. DOI: https://doi.org/10.1068/b37133
Pucher J, Buehler R. Making Cycling Irresistible: Lessons from from The Netherlands, Denmark and Germany. 2008;28(4):495-528. DOI: https://doi.org/10.1080/01441640701806612
Teixeira IP, Rodrigues da Silva AN, Schwanen T, Manzato GG, Dörrzapf L, Zeile P, et al. Does cycling infrastructure reduce stress biomarkers in commuting cyclists? A comparison of five European cities. J Transp Geogr. 2020;88(August):102830. DOI: https://doi.org/10.1016/j.jtrangeo.2020.102830
Liu F, Figliozzi M, Caviedes A, Le H, Mai L. Utilizing Egocentric Video and Sensors to Conduct Naturalistic Bicycling Studies. Report NITC-RR-805. 2016;(August). DOI: https://doi.org/10.15760/trec.154
Strauss J, Miranda-Moreno LF, Morency P. Cyclist activity and injury risk analysis at signalized intersections: A Bayesian modelling approach. Accid Anal Prev. 2013;59:9–17. DOI: https://doi.org/10.1016/j.aap.2013.04.037
Aldred R, Jungnickel K. Why culture matters for transport policy: The case of cycling in the UK. J Transp Geogr. 2014;34:78–87. DOI: https://doi.org/10.1016/j.jtrangeo.2013.11.004
Reis RS, Salvo D, Ogilvie D, Lambert E V, Goenka S, Brownson RC. Scaling up physical activity interventions across the globe: stepping up to larger and smarter approaches to get people moving Physical Activity Series 2 Executive Committee. Lancet. 2016;388(10051):1337–48. DOI: https://doi.org/10.1016/S0140-6736(16)30728-0
Butler EN, Ambs AM, Reedy J, Bowles HR. Identifying GIS measures of the physical activity built environment through a review of the literature. J Phys Act Health. 2011;8 Suppl 1(Suppl 1):91–7. DOI: https://doi.org/10.1123/jpah.8.s1.s91
Panter J, Griffin S, Dalton AM, Ogilvie D. Patterns and predictors of changes in active commuting over 12 months. Prev Med (Baltim). 2013;57(6):776–84. DOI: https://doi.org/10.1016/j.ypmed.2013.07.020
Ogilvie D, Bull F, Cooper A, Rutter H, Adams E, Brand C, et al. Evaluating the travel, physical activity and carbon impacts of a “natural experiment” in the provision of new walking and cycling infrastructure: Methods for the core module of the iConnect study. BMJ Open. 2012;2(1). DOI: https://doi.org/10.1136/bmjopen-2011-000694
Krenn PJ, Oja P, Titze S. Route Choices of Transport Bicyclists: A Comparison of Actually Used and Shortest Routes. Int J Behav Nutr Phys Act. 2014 Mar;11(1):7p. DOI: https://doi.org/10.1186/1479-5868-11-31
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Brazilian Journal of Physical Activity & Health
This work is licensed under a Creative Commons Attribution 4.0 International License.
When submitting a manuscript to the Revista Brasileira de Atividade Física & Saúde, the authors retain the copyright to the article and authorize the Revista Brasileira de Atividade Física & Saúde to publish the manuscript under the Creative Commons Attribution 4.0 License and identify it as the original publication source.