Indicadores geoespaciais do índice de bikeability como projeto de cidade amiga da bicicleta: uma revisão sistemática

Autores

  • Alfredo Leopoldo Enrique Messenger Valenzuela Universidade Federal de Santa Catarina, Departamento de Educação Física, Florianópolis, Santa Catarina, Brasil. https://orcid.org/0000-0002-6424-9839
  • Adalberto Aparecido dos Santos Lopes Universidade Federal de Santa Catarina, Departamento de Educação Física, Florianópolis, Santa Catarina, Brasil. https://orcid.org/0000-0002-3001-6412
  • Pablo Antônio Bertasso de Araujo Universidade Federal de Santa Catarina, Departamento de Educação Física, Florianópolis, Santa Catarina, Brasil. https://orcid.org/0000-0002-9414-5870
  • Marcelo Dutra Della Justina Universidade Federal de Santa Catarina, Departamento de Educação Física, Florianópolis, Santa Catarina, Brasil. https://orcid.org/0000-0001-9301-9808
  • Gabriel Claudino Budal Arins Universidade Federal de Santa Catarina, Departamento de Educação Física, Florianópolis, Santa Catarina, Brasil. https://orcid.org/0000-0003-1057-2961
  • Cassiano Ricardo Rech Universidade Federal de Santa Catarina, Departamento de Educação Física, Florianópolis, Santa Catarina, Brasil. https://orcid.org/0000-0002-9647-3448

DOI:

https://doi.org/10.12820/rbafs.27e0255

Palavras-chave:

Planejamento ambiental; Ambiente construído; Ciclismo; Sistemas de informação geográfica

Resumo

Identificar os principais indicadores geoespaciais sobre a construção do índice de bikeability. O protocolo do estudo foi registrado no PROSPERO, sob o número de registro CRD42020166795, seguiu o guia (PRISMA). Foram selecionados estudos originais indexados nas bases de dados eletrônicas Lilacs, PubMed, Science Direct, Scopus, SPORTDiscus, Trid, Web of Science. A revisão também incluiu literatura cinza, além da lista de referências e documentos identificados por especialistas. A busca inicial identificou 703 artigos, após a retirada das duplicatas e análise de títulos, resumos e texto completo, 11 artigos foram incluídos na revisão. Um total de 100 indicadores geoespaciais do ambiente construído foram identificados com diferentes definições e métricas para estimar o índice de bikeability. O setor censitário foi a unidade de análise mais utilizada nos artigos, que utilizaram dados de SIG (Sistema de Informações Geográficas) além de informações autorreferidas sobre características ambientais. Os resultados indicam que os indicadores mais usuais dizem respeito à infraestrutura – existência e largura das ciclovias – destino, inclinação, limite de velocidade, conectividade e interseções. A criação e manutenção de ambientes amigos da bicicleta poderia contemplar a implantação de mais infraestrutura em vias planas e conectadas com mudanças nos limites de velocidade nos bairros, principalmente em regiões com baixa densidade de cruzamentos, para diminuir os acidentes e aumentar a percepção de segurança dos ciclistas. 

Downloads

Não há dados estatísticos.

Referências

Mattioli G, Roberts C, Steinberger JK, Brown A. The political economy of car dependence: A systems of provision approach. Energy Res Soc Sci. 2020;66:101486.

Chillón P, Molina-García J, Castillo I, Queralt A. What distance do university students walk and bike daily to class in Spain. J Transp Heal.2016;3(3):315–20.

Zhao X, Ke Y, Zuo J, Xiong W, Wu P. Evaluation of sustainable transport research in 2000–2019. J Clean Prod. 2020;256:120404.

Guzman LA, Arellana J, Alvarez V. Confronting congestion in urban areas: Developing Sustainable Mobility Plans for public and private organizations in Bogotá. Transp Res Part A Policy Pract. 2020;134 2019:321–35.

Eren E, Uz VE. A review on bike-sharing: The factors affecting bike-sharing demand. Sustain Cities Soc. 2020;54:101882.

Dinu M, Pagliai G, Macchi C, Sofi F. Active commuting and multiple health outcomes: a systematic review and meta-analysis. Sport Med. 2019;49(3):437–52.

Hamer M, Chida Y. Active commuting and cardiovascular risk: A meta-analytic review. Prev Med (Baltim). 2008;46(1):9–13.

Oja P, Titze S, Bauman A, de Geus B, Krenn P, Reger-Nash B, et al. Health benefits of cycling: A systematic review. Scand J Med Sci Sport. 2011;21(4):496–509.

Wang G, Macera CA, Scudder-Soucie B, Schmid T, Pratt M, Buchner D. A cost-benefit analysis of physical activity using bike/pedestrian trails. Health Promot Pract. 2005;6(2):174–9.

McKim L. The economic geography of active commuting: Regional insights from Wellington, New Zealand. Reg Stud Reg Sci. 2014;1(1):88–95.

Aldred R, Sharkey R. Healthy Streets: a Business View. 2018;1–48.

Nello-Deakin S, Harms L. Assessing the relationship between neighbourhood characteristics and cycling: Findings from Amsterdam. Transp Res Procedia. 2019;41(2018):17–36.

Gössling S, Choi AS. Transport transitions in Copenhagen: Comparing the cost of cars and bicycles. Ecol Econ. 2015;113:106–13.

Koning M, Conway A. The good impacts of biking for goods: Lessons from Paris city. Case Stud Transp Policy. 2016;4(4):259–68.

Handy S. Making US cities pedestrian- and bicycle-friendly. Transportation, land use, and environmental planning. Elsevier Inc.; 2019. 169–87.

Reis RS, Hino AAF, Parra DC, Hallal PC, Brownson RC. Bicycling and walking for transportation in three Brazilian cities. Am J Prev Med. 2013;44(2).

Mesa VG, Barajas DEP. Cali Bikeability Index Map: A tool for evaluating public investment and future needs. J Transp Geogr. 2013 4(1): 5–8.

Camargo EM. Barreiras e facilitadores para o uso de bicicleta em adultos na cidade de curitiba – um estudo com grupos [dissertação de mestrado]. Curitiba: Universidade Federal do Paraná; 2012.

Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015: Elaboration and explanation. BMJ. 2015;349 2014:1–25.

Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):1–10.

Duncan MJ, Winkler E, Sugiyama T, Cerin E, Toit L, Leslie E, et al. Relationships of land use mix with walking for transport: do land uses and geographical scale matter? J Urban Health. 2010;87(5):782–95.

Ferrer ALC, Thomé AMT, Scavarda AJ. Sustainable urban infrastructure: A review. Resour Conserv Recycl. 2018;128:360–72.

Saelens BE, Sallis JF, Frank LD. Environmental correlates of walking and cycling: findings from the transportation, urban design, and planning literatures. Annals of behavioral medicine. 2003;25(2):80-91.

Sisson SB, Lee SM, Burns EK, Tudor-Locke C. Suitability of commuting by bicycle to arizona elementary schools. Am J Heal Promot. 2006; 20(3):210-3.

Lowry M, Callister D, Gresham M, Moore B. Assessment of communitywide bikeability with bicycle level of service. Transp Res Rec. 2012 1;(2314):41–8.

McNeil N. Bikeability and the 20-min neighborhood: How infrastructure and destinations influence bicycle accessibility. Transp Res Rec. 2011 1;(2247):53–63.

Greenstein AS. Mapping bikeability: A Spatial analysis on current and potential bikeability in Austin , Texas. 2015.

Winters M, Brauer M, Setton EM, Teschke K. Mapping bikeability: A spatial tool to support sustainable travel. Environ Plan B Plan Des. 2013;40(5):865–83.

Motta BG. A bikeability index for Curitiba (Brazil). University of Twente; 2017.

Krenn PJ, Oja P, Titze S. Development of a bikeability index to assess the bicycle-friendliness of urban environments. Open J Civ Eng. 2015;05(04):451–9.

Grigore E, Garrick N, Fuhrer R, Axhausen IKW. Bikeability in Basel. Transp Res Rec. 2019;2673(6):607–17.

Rugtvedt JL. A dynamic scale approach for assessing bikeability with sensitivity for different user groups. Universität Salzburg; 2019.

Lin JJ, Wei YH. Assessing area-wide bikeability: A grey analytic network process. Transp Res Part A Policy Pract. 2018 1;113:381–96.

Giles-Corti B, Vernez-Moudon A, Reis R, Turrell G, Dannenberg AL, Badland H, et al. City planning and population health: a global challenge. Lancet. 2016;388(10062):2912–24.

Winters M, Brauer M, Setton EM, Teschke K. Built environment influences on healthy transportation choices: Bicycling versus driving. J Urban Health. 2010;87(6):969–93.

Titze S, Stronegger WJ, Janschitz S, Oja P. Association of built-environment, social-environment and personal factors with bicycling as a mode of transportation among Austrian city dwellers. Prev Med (Baltim). 2008;47(3):252–9.

Moudon AV, Lee C. Walking and Bicycling: An evaluation of environmental audit instruments. Am J ofHealth Promot. 2003;18(1):21-37.

Winter M. Improving public health through active transportation: understanding the influence of the built environment on decisions to travel by bicycle. University of British Columbia; 2011.

Kellstedt DK, Spengler JO, Foster M, Lee C, Maddock JE. A scoping review of bikeability assessment methods. J Community Health. 2020;(0123456789).

Lopes AAS, Hino AAF, Moura EN, Reis RS. The Geographic Information System in environment, physical activity and health researches. Rev Bras Ativ Fís Saúde. 2019;23:1–11.

Silva ICM, Hino AA, Lopes A, Ekelund U, Brage S, Gonçalves H, et al. Built environment and physical activity: Domain-and activity-specific associations among Brazilian adolescents. BMC Public Health. 2017;17(1):1–11.

Camargo EM, Alberico CO, Lopes AAS, Schipperijn J RR. Characteristics of the built environment on GPS- determined bicycle routes used by adolescents. Rev Bras Ativ Fís Saúde. 2020;24(e0106):1–7.

Cain KL, Geremia CM, Conway TL, Frank LD, Chapman JE, Fox EH, et al. Development and reliability of a streetscape observation instrument for international use: MAPS-global. Int J Behav Nutr Phys Act. 2018;15(1):1–11.

Mölenberg FJM, Panter J, Burdorf A, Van Lenthe FJ. A systematic review of the effect of infrastructural interventions to promote cycling: Strengthening causal inference from observational data. International Journal of Behavioral Nutrition and Physical Activity. BioMed Central Ltd.; 2019;16(1):1-31.

Weliwitiya H, Rose G, Johnson M. Bicycle train intermodality: Effects of demography, station characteristics and the built environment. J Transp Geogr. 2019;74 2018:395–404.

Fitch DT, Handy SL. Road environments and bicyclist route choice: The cases of Davis and San Francisco, CA. J Transp Geogr. 2020;85:102705.

Ryus P, Vandehey M, Elefteriadou L, Dowling RG, Ostrom BK. Highway Capacity Manual 2010.

American Association of State Highway and Transportation Officials. Guide for the Development of Bicycle Facilities, 4th Edition, 2012.

Transportation Research Board. Multimodal Level of Service Analysis for Urban Streets. 2008.

Harkey DL, Reinfurt DW, Sorton A. The Bicycle Compatibility Index: a level of service concept, implementation manual. 1998.

Hoedl S, Titze S, Oja P. The Bikeability and Walkability evaluation table: Reliability and application. Am J Prev Med. 2010;39(5):457–9.

Wahlgren L, Schantz P. Bikeability and methodological issues using the active commuting route environment scale (ACRES) in a metropolitan setting. BMC Med Res Methodol. 2011;11(1):1-20.

Winters M, Teschke K. Route preferences among adults in the near market for bicycling: Findings of the cycling in cities study. Am J Heal Promot. 2010;25(1):40–7.

Zhao P. The Impact of the Built Environment on Bicycle Commuting: Evidence from Beijing. Urban Stud. 2014;51(5):1019–37.

Cervero R, Duncan M. Walking, Bicycling, and Urban Landscapes: Evidence from the San Francisco Bay Area. Am J Public Health. 2003;93(9):1478–83.

Cervero R, Sarmiento OL, Jacoby E, Gomez LF, Neiman A. Influences of built environments on walking and cycling: Lessons from Bogotá. Int J Sustain Transp. 2009;3(4):203-26.

Braun LM, Rodriguez DA, Cole-Hunter T, Ambros A, Donaire-Gonzalez D, Jerrett M, et al. Short-term planning and policy interventions to promote cycling in urban centers: Findings from a commute mode choice analysis in Barcelona, Spain. Transp Res Part A Policy Pract. 2016;89:164–83.

Pikora T, Giles-Corti B, Bull F, Jamrozik K, Donovan R. Developing a framework for assessment of the environmental determinantsof walking and cycling. Soc Sci Med 56. 2003;56:1693–703.

Wahlgren L, Schantz P. Exploring bikeability in a metropolitan setting: Stimulating and hindering factors in commuting route environments. BMC Public Health. 2012;12(1):168.

Ma L, Dill J. Associations between the objective and perceived built environment and bicycling for transportation. J Transp Heal. 2015;2(2):248-55.

Wang K, Akar G, Chen YJ. Bike sharing differences among Millennials, Gen Xers, and Baby Boomers: Lessons learnt from New York City’s bike share. Transp Res Part A Policy Pract. 2018;116:1–14.

Kabak M, Erbaş M, Çetinkaya C, Özceylan E. A GIS-based MCDM approach for the evaluation of bike-share stations. J Clean Prod. 2018;201:49–60.

Kaltenbrunner A, Meza R, Grivolla J, Codina J, Banchs R. Urban cycles and mobility patterns: Exploring and predicting trends in a bicycle-based public transport system. Pervasive Mob Comput. 2010;6(4):455–66.

Wang L. The Relationship between the Neighborhood Built Environment and Active Transportation among Adults: A systematic literature review. 2017;1(3):29.

Rybarczyk G. Examining the impact of urban morphology on bicycle mode choice. 2014;41:272–88.

Pucher J, Buehler R. Making Cycling Irresistible: Lessons from from The Netherlands, Denmark and Germany. 2008;28(4):495-528.

Teixeira IP, Rodrigues da Silva AN, Schwanen T, Manzato GG, Dörrzapf L, Zeile P, et al. Does cycling infrastructure reduce stress biomarkers in commuting cyclists? A comparison of five European cities. J Transp Geogr. 2020;88(August):102830.

Liu F, Figliozzi M, Caviedes A, Le H, Mai L. Utilizing Egocentric Video and Sensors to Conduct Naturalistic Bicycling Studies. Report NITC-RR-805. 2016;(August).

Strauss J, Miranda-Moreno LF, Morency P. Cyclist activity and injury risk analysis at signalized intersections: A Bayesian modelling approach. Accid Anal Prev. 2013;59:9–17.

Aldred R, Jungnickel K. Why culture matters for transport policy: The case of cycling in the UK. J Transp Geogr. 2014;34:78–87.

Reis RS, Salvo D, Ogilvie D, Lambert E V, Goenka S, Brownson RC. Scaling up physical activity interventions across the globe: stepping up to larger and smarter approaches to get people moving Physical Activity Series 2 Executive Committee. Lancet. 2016;388(10051):1337–48.

Butler EN, Ambs AM, Reedy J, Bowles HR. Identifying GIS measures of the physical activity built environment through a review of the literature. J Phys Act Health. 2011;8 Suppl 1(Suppl 1):91–7.

Panter J, Griffin S, Dalton AM, Ogilvie D. Patterns and predictors of changes in active commuting over 12 months. Prev Med (Baltim). 2013;57(6):776–84.

Ogilvie D, Bull F, Cooper A, Rutter H, Adams E, Brand C, et al. Evaluating the travel, physical activity and carbon impacts of a “natural experiment” in the provision of new walking and cycling infrastructure: Methods for the core module of the iConnect study. BMJ Open. 2012;2(1).

Krenn PJ, Oja P, Titze S. Route Choices of Transport Bicyclists: A Comparison of Actually Used and Shortest Routes. Int J Behav Nutr Phys Act. 2014 Mar;11(1):7p.

Downloads

Publicado

2022-07-04

Como Citar

1.
Valenzuela ALEM, Lopes AA dos S, Araujo PAB de, Justina MDD, Arins GCB, Rech CR. Indicadores geoespaciais do índice de bikeability como projeto de cidade amiga da bicicleta: uma revisão sistemática. Rev. Bras. Ativ. Fís. Saúde [Internet]. 4º de julho de 2022 [citado 3º de dezembro de 2022];27:1-12. Disponível em: https://rbafs.org.br/RBAFS/article/view/14739

Edição

Seção

Artigos de Revisão