Characteristics of the built environment on GPS-determined bicycle routes used by adolescents
DOI:
https://doi.org/10.12820/rbafs.24e0106Palavras-chave:
Physical activity, Adolescent, Bicycling, Geographic Information System, Global Positioning SystemResumo
O objetivo deste estudo foi identificar as características das rotas utilizadas para o uso de bicicleta de acordo com o sexo em uma amostra de adolescentes da cidade de Curitiba, Brasil. O estudo foi realizado em 2013 com 147 adolescentes de 12 a 17 anos, que usaram acelerômetro e receptores de Sistema de Posicionamento Global para avaliar a atividade física e a localização geográfica. Um total de 38 participantes (50,0% meninas) apresentaram pelo menos uma rota em bicicleta e, por isso, foram incluídos na amostra analítica. Foram identificadas 386 rotas. Quase todas as rotas incluíam meios de transporte público, praças e áreas residencial, comercial, de alimentos ou de lazer (> 97,0%), enquanto ciclovias (62,7%) e academias ao ar livre eram menos frequentes (71,8%). As estações de ônibus de transporte rápido (BRT), parques e terrenos vazios foram as menos frequentes nas rotas (37,3%; 17,1%; e 7,5%, respectivamente). As rotas utilizadas pelas meninas tiveram menos terrenos vazios (3,9%; p = 0,001) e mais residenciais, varejo, serviços de alimentação e recreação (99,6% ; p = 0,003; 99,1%; p = 0,011; 98,7%; p = 0,030, respectivamente) quando comparado com meninos. Os resultados sugerem que as rotas utilizadas pelos adolescentes têm uso misto e diversificado do solo e que meninas trafegam por rotas com maior infraestrutura de bicicleta e serviços e menos terrenos vazios quando comparado com meninos.
Downloads
Referências
Guthold R, Stevens GA, Riley LM, Bull FC. Global trends in insufficient physical activity among adolescents: a pooled analysis of 298 population-based surveys with 1·6 million participants. Lancet Child Adolesc Health. 2020;4:23-35.
Loh VHI, Veitch J, Salmon J, Cerin E, et al. Built environment and physical activity among adolescents: the moderating effects of neighborhood safety and social support. Int J Behav Nutr Phys Activity. 2019;16 (1):132-9.
Sallis JF, Conway TL, Cain KL, Carlson JU, et al. Neighborhood built environment and socioeconomic status in relation to physical activity, sedentary behavior, and weight status of adolescents. Prev Med. 2018;110:47-54.
Audrey S, Batista-ferrer H. Healthy urban environments for children and young people: A systematic review of intervention studies. Health Place. 2015;36:97-117.
Knuth AG, Hallal PC. School environment and physical activity in children and adolescents: systematic review. Rev Bras Ativ Fís Saúde. 2012;17(6):463-73.
Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U, et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012.380 (9838):247-57.
Grow HM, Saelens BE, Kerr J, Durant NH, Normam GJ, Dallis JF, et al. Where are youth active? Roles of proximity, active transport, and built environment. Med Sci Sports Exerc. 2008;40(12):2071-9.
Alberico CO, Schipperijn J, Reis RS. Use of global positioning system for physical activity research in youth: ESPAÇOS Adolescentes, Brazil. Prev Med. 2017.103;S59-S65.
Dessing D, de Vries SI, Hegeman G, Verhagen E et al. Children’s route choice during active transportation to school: difference between shortest and actual route. Int J Behav Nutr Phys Act.2016;13:48.
Duncan MJ, Badland HM, Mummery WK. Applying GPS to enhance understanding of transport-related physical activity. J Sci Med Sport. 2009;12:549-56.
Macridis S, Bengoechea EG. Adoption of Safe Routes to School in Canadian and the United States Contexts: Best Practices and Recommendations. J Sch Health.2015;85: 558-66.
Lee C, Li L. Demographic, physical activity, and route characteristics related to school transportation: An exploratory study. Am J Heal Promot. 2014;28:77-89.
Mccrorie PR, Fenton C, Ellaway A. Combining GPS, GIS, and accelerometry to explore the physical activity and environment relationship in children and young people – a review. Int J Behav Nutr Phys Act. 2014;11:93.
Bürgi R, Tomatis L, Murer K, Bruin ED. Localization of physical activity in primary school children using accelerometry and global positioning system. PLoS One. 2015; 10:1-13.
Sallis JF, Cervero RB, Ascher W, Henderson KA, Kraft MK, Kerr J. An Ecological approach to creating active living communities. Annu Rev Public Health. 2006;27:297-322.
Hino AAF, Rech CR, Gonçalves PB, Hallal PC et al . Projeto ESPAÇOS de Curitiba, Brasil: aplicabilidade de métodos mistos de pesquisa e informações georreferenciadas em estudos sobre a atividade física e ambiente construído. Rev Panam Salud Publica. 2012;32:226-33.
Kerr J, Sallis JF, Owen N, De Bourdeaudhuij I, Cerin E, Sugiyama T et al. Advancing Science and Policy through a Coordinated International Study of Physical Activity and Built Environments: IPEN Methods. J Phys Act Health.2013;10:581-601.
Laguna M, Ruiz JR, Gallardo C, Gracia-Pastor T, Lara MT, Aznar S. Obesity and physical activity patterns in children and adolescents. J Pediatr Child Heal. 2013;49: 942-49.
Cerin E, Cain Kl, Conway TL, Van Dyck D, Hinckson E, Schipperijn J et al. Neighborhood Environments and Objectively Measured Physical Activity in 11 Countries. Med Sci Sports Exerc. 2014;46(12):2253-64.
Carlson JA, Jankowska MM, Meseck K, Godbole S, Natarajan G, Raab F et al. Validity of PALMS GPS Scoring of Active and Passive Travel Compared to SenseCam. Med Sci Sports Exerc.2015;47(3):662-7.
Madsen T, Schipperijn J, Christiansen LB, Christiansen LB, et al. Developing suitable buffers to capture transport cycling behavior. Front Public Healh.2014;2:61.
Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: International Survey. Bmj. 2000;320(7244):1240-3.
Conde WL, Monteiro CA. Body mass index cutoff points for evaluation of nutritional status in Brazilian children and adolescents. J Pediatr.2006;82(4):266-72.
Associação Brasileira de Empresas de Pesquisa – ABEP. Critério de Classificação Econômica Brasil. São Paulo: Associação Brasileira de Empresas de Pesquisa. 2013.
Reis RS, Hino AAF, Rech CR, Kerr J, Hallal PC. Walkability and Physical Activity: Findings from Curitiba, Brazil. Am J Prev Med.2013;45:269-75.
Schantz P. Exploring bikeability in a suburban metropolitan area using the Active Commuting Route Environment Scale (ACRES). Int J Environ Res Public Health. 2014; 11:8276-300.
Ma L, Dill J. Do People‘s Perceptions of Neighborhood Bikeability Match ’Reality"? J Transp Land Use.2017;10:1-8.
Ribeiro IC, Parra DC, Hoehner CM, Soares J et al. School-based physical education programs: evidence-based physical activity interventions for youth in Latin America. Glob Health Promot. 2010;17:5-15.
Hoehner CM, Ribeiro IC, Parra DC, Reis RS et al. Physical activity interventions in Latin America: Expanding and classifying the evidence. Am J Prev Med. 2013;44:e31–e40.
Oreskovic NM, Perrin JM, Robinson AI, Locascio JJ et al. Adolescents’ use of the built environment for physical activity. BMC Public Health. 2015;15:1596.
Ferrari GLM, Victo ER, Ferrari TK, Solé D. Active transportation to school for children and adolescents from Brazil: a systematic review. Rev. Bras. Cineantropom. Desempenho Hum. 2018;20(4):406-14.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2019 Edina Maria de Camargo, Claudia Oliveira Alberico, Adalberto Aparecido Santos Lopes, Jasper Schipperijn, Rodrigo Siqueira Reis
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Ao submeter um manuscrito à Revista Brasileira de Atividade Física & Saúde, os autores mantêm a titularidade dos direitos autorais sobre o artigo, e autorizam a Revista Brasileira de Atividade Física & Saúde a publicar esse manuscrito sob a Licença Creative Commons Atribuição 4.0 e identificá-la como veículo de sua publicação original.