Objectively measured physical activity according to the periods of the day in the Pelotas Cohort

Autores

  • Andrea Wendt Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil. https://orcid.org/0000-0002-4640-2254
  • Fernando C. Wehrmeister Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil. https://orcid.org/0000-0001-7137-1747
  • Luiza I. C. Ricardo Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil. https://orcid.org/0000-0002-1244-4501
  • Bruna Gonçalves C. da Silva Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil. https://orcid.org/0000-0003-2917-7320
  • Rafaela C. Martins Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil. https://orcid.org/0000-0003-3538-7228
  • Helen Gonçalves Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil.
  • Felipe F. Reichert Postgraduate Program in Physical Education, Federal University of Pelotas, Pelotas, Brazil. https://orcid.org/0000-0002-0951-9875
  • Inácio Crochemore-Silva Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil. Postgraduate Program in Physical Education, Federal University of Pelotas, Pelotas, Brazil. https://orcid.org/0000-0001-5390-8360

DOI:

https://doi.org/10.12820/rbafs.25e0149

Palavras-chave:

Motor activity, Physical activity, Accelerometry, Periodicity

Resumo

Este estudo teve o objetivo de mensurar atividade física (AF) objetivamente em diferentes períodos do dia em adultos jovens de acordo com sexo, posição socioeconômica e dia de semana e final de semana. Esta é uma análise transversal conduzida com participantes da Coorte de Nascimentos de 1993 de Pelotas aos 22 anos. AF foi avaliada por um acelerômetro triaxial. Foram realizadas análises descritivas apresentando o tempo em AF leve (AFL) e moderada a vigorosa (AFMV) em diferentes períodos do dia (manhã – 6h às 11:59h, tarde – 12h às 19:59h e noite – 20h às 0h). O presente estudo incluiu 2.766 individuos (48.2% homens e 51.8% mulheres. AFL foi maior entre as mulheres enquanto AFMV foi maior entre os homens. A mediana de AF foi maior nos dias de semana comparado aos dias de final de semana para qualquer intensidade. As medianas de AFMV pela manhã e noite foram zero minutos para todos os dias nos dois sexos. O grupo econômico mais alto apresentou maior percentual de individuos com zero minutos de AFMV. AF pode variar de acordo com diferentes períodos do dia e intensidades. A ausência de prática de AF foi marcadamente influenciada por sexo e posição socioeconômica.

Downloads

Não há dados estatísticos.

Referências

Bauman AE, Reis RS, Sallis JF, Wells JC, Loos RJF, Martin BW, et al. Correlates of physical activity: why are some people physically active and others not? Lancet (London, England). 2012;380(9838):258-71.

Silva ICM, Mielke GI, Bertoldi AD, Arrais PSD, Luiza VL, Mengue SS, et al. Overall and Leisure-Time Physical Activity Among Brazilian Adults: National Survey Based on the Global Physical Activity Questionnaire. J Phys Activ Health. 2018;15(3):212-18.

Crochemore-Silva I, Knuth AG, Mielke GI, Loch MR. Promoção de atividade física e as políticas públicas no combate às desigualdades: reflexões a partir da Lei dos Cuidados Inversos e Hipótese da Equidade Inversa. Cad Saúde Pública. 2020;36(6):e00155119.

Ide PH, Martins MSAS, Segri NJ. Tendência dos diferentes domínios da atividade física em adultos brasileiros: dados do Vigitel de 2006-2016. Cad Saúde Pública. 2020;36(8):e00142919.

Aleksovska K, Puggina A, Giraldi L, Buck C, Burns C, Cardon G, et al. Biological determinants of physical activity across the life course: a "Determinants of Diet and Physical Activity" (DEDIPAC) umbrella systematic literature review. Sports Med – open. 2019;5(1):2.

O'Donoghue G, Kennedy A, Puggina A, Aleksovska K, Buck C, Burns C, et al. Socio-economic determinants of physical activity across the life course: A "DEterminants of DIet and Physical ACtivity" (DEDIPAC) umbrella literature review. PloS one. 2018;13(1):e0190737.

Jansen FM, van Kollenburg GH, Kamphuis CBM, Pierik FH, Ettema DF. Hour-by-hour physical activity patterns of adults aged 45-65 years: a cross-sectional study. J public health (Oxford, England). 2018;40(4):787-96.

Steeves JA, Shiroma EJ, Conger SA, Domelen DV, Harris TB.. Physical activity patterns and multimorbidity burden of older adults with different levels of functional status: NHANES 2003-2006. Disabil Health J. 2019;12(3):495-502.

Cooper AR, Page A, Fox KR, et al. Physical activity patterns in normal, overweight and obese individuals using minute-by-minute accelerometry. Eur J Clin Nutr. 2000;54(12):887-94.

Gil-Rey E, Maldonado-Martin S, Palacios-Samper N, Gorostiaga EM. Objectively measured absolute and relative physical activity intensity levels in postmenopausal women. Eur J Sport Sci. 2019;19(4):539-48.

Kecklund G, Axelsson J. Health consequences of shift work and insufficient sleep. BMJ (Clinical research ed). 2016;355:i5210.

Vandelanotte C, Short C, Rockloff M, Di Millia L, Ronan K, Happell B, et al. How do different occupational factors influence total, occupational, and leisure-time physical activity? J Phys Activ Health. 2015;12(2):200-7.

Seo DY, Lee S, kim N, Ko KS, Rhee BD, Prak BJ, et al. Morning and evening exercise. Integr Med Res. 2013(2):139-44.

Myllymäki T, Kyröläinen H, Savolainen K, Hokka L, Jakonen R, Juuti T, et al. Effects of vigorous late-night exercise on sleep quality and cardiac autonomic activity. J Sleep Res. 2011;20(1 Pt 2):146-53.

Fairbrother K, Cartner B, Alley JR, Curry CD, Dickinson DL, Morris DM, et al. Effects of exercise timing on sleep architecture and nocturnal blood pressure in prehypertensives. Vasc Health Risk Manag. 2014;10:691-8.

Stutz J, Eiholzer R, Spengler CM. Effects of Evening Exercise on Sleep in Healthy Participants: A Systematic Review and Meta-Analysis. Sports Med (Auckland, NZ). 2019;49(2):269-87.

Goncalves H, Assuncao MC, Wehrmeister FC, Oliveira IO, Barros FC, Victoria CG, et al. Cohort profile update: The 1993 Pelotas (Brazil) birth cohort follow-up visits in adolescence. Int J Epidemiol. 2014;43(4):1082-8.

Goncalves H, Wehrmeister FC, Assuncao MCF, Tovo-Rodrigues L, Oliveira IO, Murray J, et al. Cohort Profile Update: The 1993 Pelotas (Brazil) Birth Cohort follow-up at 22 years. Int J Epidemiol. 2018;47(5):1389-90e.

Victora CG, Hallal PC, Araujo CL, Menezes AMB, Wells JCK, Barros FC. Cohort profile: the 1993 Pelotas (Brazil) birth cohort study. Int J Epidemiol. 2008;37(4):704-9.

Migueles JH, Rowlands AV, Huber F, Sabia S, van Hess VT. GGIR: A Research Community–Driven Open Source R Package for Generating Physical Activity and Sleep Outcomes From Multi-Day Raw Accelerometer Data. J Meas Phys Behav. 2019(2):188-96.

van Hees VT, Fang Z, Langford J, Assah F, Mohammad A, Silva ICM, et al. Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: an evaluation on four continents. J Appl Physiol (Bethesda, Md : 1985). 2014;117(7):738-44.

Hildebrand M, VT VAN Hees, Hansen BH, Ekelundet U. Age group comparability of raw accelerometer output from wrist- and hip-worn monitors. Med Sci Sports Exer. 2014;46(9):1816-24.

Ricardo LIC, Wendt A, Galliano LM, Muller WA, Crux GIN, Wehrmeister F, et al. Number of days required to estimate physical activity constructs objectively measured in different age groups: Findings from three Brazilian (Pelotas) population-based birth cohorts. PloS one. 2020;15(1):e0216017.

Rutstein SO, Johnson K. The DHS wealth index. DHS Comparative Reports No 6. Calverton, Maryland, USA: ORC Macro, 2004.

Varma VR, Dey D, Leroux A, Di J, Urbanek J, Xiao L, et al. Re-evaluating the effect of age on physical activity over the lifespan. Prev Med. 2017;101:102-08.

Konharn K, Santos MP, Ribeiro JC. Differences between weekday and weekend levels of moderate-to-vigorous physical activity in Thai adolescents. Asia Pac J Public Health. 2015;27(2):Np2157-66.

Cerin E, Mitas J, Cain KL, Conway TL, Adams MA, Schofield G, et al. Do associations between objectively-assessed physical activity and neighbourhood environment attributes vary by time of the day and day of the week? IPEN adult study. Int J Behav Nutr Phys Act. 2017;14(1):34.

Ramirez-Rico E, Hilland TA, Foweather L, Fernández-Garcia E, Fairclough SJ. Weekday and weekend patterns of physical activity and sedentary time among Liverpool and Madrid youth. Int J Behav Nutr Phys Act. 2014;14(3):287-93.

Rowlands AV, Gomersall SR, Tudor-Locke C, Bassett DR, Kang M, Fraysse F, et al. Introducing novel approaches for examining the variability of individuals' physical activity. J Sports Sci. 2015;33(5):457-66.

Orme M, Wijndaele K, Sharp SJ, Westgate K, Ekelund U, Brage S. Combined influence of epoch length, cut-point and bout duration on accelerometry-derived physical activity. . Int J Behav Nutr Phys Act. 2014;11(1):34.

Silva IC, van Hees VT, Ramires VV, Knuth AG, Bielemann RM, Ekelund U, et al. Physical activity levels in three Brazilian birth cohorts as assessed with raw triaxial wrist accelerometry. Int J Epidemiol 2014;43(6):1959-68.

Amagasa S, Fukushima N, Kikuchi H, Takamiya T, Oka K, Inoue S. Light and sporadic physical activity overlooked by current guidelines makes older women more active than older men. Int J Behav Nutr Phys Act. 2017;14(1):59.

Downloads

Publicado

2020-12-10

Como Citar

1.
Wendt A, Wehrmeister FC, Ricardo LIC, Silva BGC da, Martins RC, Gonçalves H, et al. Objectively measured physical activity according to the periods of the day in the Pelotas Cohort . Rev. Bras. Ativ. Fís. Saúde [Internet]. 10º de dezembro de 2020 [citado 21º de dezembro de 2024];25:1-10. Disponível em: https://rbafs.org.br/RBAFS/article/view/14355

Edição

Seção

Artigos Originais