Exercício intervalado de alta intensidade e pressão arterial ambulatorial de adolescentes obesos
DOI:
https://doi.org/10.12820/rbafs.23e0026Palavras-chave:
Exercício, Monitorização ambulatorial da pressão arterial, Saúde do adolescenteResumo
O objetivo deste estudo foi analisar o comportamento da pressão arterial ambulatorial de adolescentes obesos após uma sessão de exercício intervalado de alta intensidade (HIT) na esteira ergométrica. Trata-se de uma pesquisa com delineamento cross-over randomizado, realizada com nove adolescentes do sexo masculino de 15 a 18 anos de idade. Os voluntários realizaram dois protocolos experimentais, com intervalo mínimo de 48 horas: controle e HIT. O protocolo HIT foi constituído de cinco séries a 85 – 95% do VO2pico por um minuto, intercalados por três minutos de recuperação a 40 - 50% do VO2pico. Antes e após os protocolos, frequência cardíaca, pressão arterial sistólica (PAS), pressão arterial diastólica e pressão arterial média foram mensuradas na posição sentada. A medida ambulatorial da pressão arterial foi realizada nos dois protocolos por meio de um monitor automático da marca SpaceLabs 90207, programado para realizar medidas a cada 20 minutos, das 12:00 às 22:00 horas. Os efeitos dos protocolos experimentais nas respostas hemodinâmicas foram testados por meio da análise de variância para medidas repetidas, considerando-se os fatores (controle e HIT) e tempo (pré-sessão e pós-sessão). Os resultados apontaram diferença significativa entre as médias da PAS nos protocolos controle e HIT na primeira hora após o final do exercício (133,66 ± 7,56 vs 125,88 ± 7,20 mmHg, respectivamente; p = 0,005), indicando hipotensão pós-exercício induzida pelo HIT. O protocolo HIT empregado promoveu efeito hipotensor de moderada magnitude e curta duração sobre a PAS.
Downloads
Referências
2. Paradis G, Lambert M, O’Loughlin J, Lavallée C, Aubin J, Delvin E, et al. Blood pressure and adiposity in children and adolescents. Circulation. 2004;110(13):1832–8.
3. Maggio ABR, Aggoun Y, Marchand LM, Martin XE, Herrmann F, Beghetti M, et al. Associations among obesity, blood pressure, and left ventricular mass. J Pediatr. 2008;152(4):489–93.
4. Stabouli S, Kotsis V, Papamichael C, Constantopoulos A, Zakopoulos N. Adolescent obesity is associated with high ambulatory blood pressure and increased carotid intimal-medial thickness. J Pediatr. 2005;147(5):651–6.
5. Flynn JT, Daniels SR, Hayman LL, Maahs DM, McCrindle BW, Mitsnefes M, et al. Update: ambulatory blood pressure monitoring in children and adolescents: a scientific statement from the American Heart Association. Hypertension. 2014;63(5):1116–35.
6. Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA. Exercise and Hypertension. Med Sci Sports Exerc. 2004;36(3):533–53.
7. Carvalho RST, Pires CMR, Junqueira GC, Freitas D, Marchi-Alves LM. Magnitude e duração da resposta hipotensora em hipertensos: exercício contínuo e intervalado. Arq Bras Cardiol. 2015;104(3):234–41.
8. Dias DF, Loch MR, Ronque ERV. Perceived barriers to leisure-time physical activity and associated factors in adolescents. Cien Saude Colet. 2015;20(11):3339–50.
9. Maggio ABR, Aggoun Y, Martin XE, Marchand LM, Beghetti M, Farpour-Lambert NJ. Long-term follow-up of cardiovascular risk factors after exercise training in obese children. Int J Pediatr Obes. 2011;6(2):e603–10.
10. Kavey REW, Kveselis DA, Gaum WE. Exaggerated blood pressure response to exercise in children with increased low-density lipoprotein cholesterol. Am Heart J. 1997;133(2):162–8.
11. Liu S, Goodman J, Nolan R, Lacombe S, Thomas SG. Blood pressure responses to acute and chronic exercise are related in prehypertension. Med Sci Sports Exerc. 2012;44(9):1644–52.
12. Lacombe SP, Goodman JM, Spragg CM, Liu S, Thomas SG. Interval and continuous exercise elicit equivalent postexercise hypotension in prehypertensive men, despite differences in regulation. Appl Physiol Nutr Metab. 2011;36(6):881–91.
13. Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol. 1976;4(2):97–110.
14. Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193–213.
15. World Health Organization. Global recommendations on physical activity for health. 2010.
16. Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in boys. Arch Dis Child. 1970;45(239):13–23.
17. World Health Organization. WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weightfor-Length, Weight-for-Height and Body Mass Index-forAge: Methods and Development. Geneva; 2006.
18. Slaughter M, Lohman T, Boileau R, Horswill C, Stillman R, Van Loan M, et al. Skinfold equations for estimation of body fatness in children and youth. Hum Biol. 1988;60(5):709–23.
19. Paridon SM, Alpert BS, Boas SR, Cabrera ME, Caldarera LL, Daniels SR, et al. Clinical stress testing in the pediatric age group: A statement from the American Heart Association council on cardiovascular disease in the young, committee on atherosclerosis, hypertension, and obesity in youth. Circulation. 2006;113(15):1905–20.
20. Borg G. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–81.
21. Ciolac EG. High-intensity interval training and hypertension: maximizing the benefits of exercise? Am J Cardiovasc Dis. 2012;2(2):102–10.
22. Wisløff U, Coombes JS, Rognmo O. CrossTalk proposal: High intensity interval training does have a role in risk reduction or treatment of disease. J Physiol. 2015;593(24):5215–7.
23. Weston KS, Wisløff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med. 2013;48(16):1227–34.
24. Costigan SA, Eather N, Plotnikoff RC, Taaffe DR, Lubans DR. High-intensity interval training for improving health-related fitness in adolescents: a systematic review and meta-analysis. Br J Sports Med. 2015;49(19):1253–9.
25. King-Schultz L, Weaver AL, Cramer CH. Correlation of blood pressure readings from 6-hour intervals with the daytime period of 24-hour ambulatory blood pressure monitoring in pediatric patients. J Clin Hypertens. 2012;14(6):396–400.
26. Jones H, Taylor CE, Lewis NCS, George K, Atkinson G. Post-exercise blood pressure reduction is greater following intermittent than continuous exercise and is influenced less by diurnal variation. Chronobiol Int. 2009;26(2):293–306.
27. Miyashita M, Burns SF, Stensel DJ. Accumulating short bouts of running reduces resting blood pressure in young normotensive/pre-hypertensive men. J Sports Sci. 2011;29(14):1473–82.
28. Angadi SS, Weltman A, Watson-Winfield D, Weltman J, Frick K, Patrie J, et al. Effect of fractionized vs continuous, single-session exercise on blood pressure. J Hum Hypertens. 2010;24(4):300–2.
29. Brito LC, Queiroz ACC, Forjaz CLM. Influence of population and exercise protocol characteristics on hemodynamic determinants of post-aerobic exercise hypotension. Brazilian J Med Biol Res. 2014;47(8):626–36.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2018 Waynne Ferreira de Faria, Rui Gonçalves Marques Elias, Antonio Stabelini Neto
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Ao submeter um manuscrito à Revista Brasileira de Atividade Física & Saúde, os autores mantêm a titularidade dos direitos autorais sobre o artigo, e autorizam a Revista Brasileira de Atividade Física & Saúde a publicar esse manuscrito sob a Licença Creative Commons Atribuição 4.0 e identificá-la como veículo de sua publicação original.