Impact of cutoff points on adolescent sedentary behavior measured by accelerometer

  • Ially Rayssa Dias Moura Study and Research Group in Epidemiology of Physical Activity, João Pessoa, Paraiba, Brazil. https://orcid.org/0000-0001-8210-2059
  • Arthur Oliveira Barbosa Study and Research Group in Epidemiology of Physical Activity, João Pessoa, Paraiba, Brazil. Associate Post-Graduation Program in Physical Education. João Pessoa, Paraiba, Brazil. https://orcid.org/0000-0002-5976-7287
  • Inácio Crochemore Mohnsam da Silva Federal University of Pelotas, Post-Graduate Program in Epidemiology, Pelotas, Rio Grande do Sul, Brazil. Associate Post-Graduation Program in Physical Education, Pelotas, Rio Grande do Sul, Brazil. https://orcid.org/0000-0002-2030-5747
  • Marcelo Romanzini Londrina State University, Department of Physical Education, Londrina, Paraná, Brazil. 7Associate Post-Graduation Program in Physical Education UEM/UEL, Londrina, Paraná, Brazil. https://orcid.org/0000-0003-1355-331X
  • Alcides Prazeres Filho Study and Research Group in Epidemiology of Physical Activity, João Pessoa, Paraiba, Brazil. Associate Post-Graduation Program in Physical Education. João Pessoa, Paraiba, Brazil. https://orcid.org/0000-0003-2661-090X
  • José Cazuza de Farias Júnior Study and Research Group in Epidemiology of Physical Activity, João Pessoa, Paraiba, Brazil. Associate Post-Graduation Program in Physical Education. João Pessoa, Paraiba, Brazil. Federal University of Paraíba. Department of Physical Education. João Pessoa, Paraiba, Brazil. https://orcid.org/0000-0002-1082-6098
Palavras-chave: Sedentary lifestyle, Accelerometry, Adolescent

Resumo

O objetivo deste estudo foi analisar o impacto dos pontos de corte para definir comportamento sedentário (CS) no tempo e prevalência desse comportamento, mensurado por acelerômetros, em adolescentes no Nordeste do Brasil. Estudo transversal, com adolescentes de 10 a 14 anos de idade de escolas públicas de João Pessoa, Paraíba, em 2014. O CS foi mensurado por acelerômetro (ActiGraph GT3X+) e foram aplicados os seguintes pontos de corte: Evenson (≤ 25 counts/15seg), Puyau (< 800 counts/60seg), Vanhelst (≤ 400 counts/60seg), Hänggi (< 3 counts/1seg) e Romanzini (≤ 180 counts/15seg), combinados às definições de 20 e 60 minutos de não uso do acelerômetro. Para comparar o tempo médio e a prevalência de tempo excessivo de CS (≥ 8 horas/dia), entre os pontos de corte, utilizou-se a ANOVA ONE-WAY para medidas repetidas (post hoc de Bonferroni) e o teste de Cochran, respectivamente. Houve diferenças significativas na média de CS entre todos os pontos de corte analisados (p < 0,05), variando de 37,44 min/dia (Romanzini: 547,37 min/dia vs. Vanhelst: 584,81 min/dia) a 370,44 min/dia (Hänggi: 310,51 min/dia vs. Puyau: 680,95 min/dia) para o critério de 20 minutos de não uso; e de 81,52 min/dia (Evenson: 502,41 min/dia vs. Romanzini: 583,93 min/dia) a 361,94 min/dia (Hänggi: 354,58 min/dia vs. Puyau: 716,52 min/dia) para o de 60 minutos. A prevalência de exposição excessiva de CS variou de 3,3% (Hänggi) a 99,3% (Puyau). O tempo médio diário e a prevalência de exposição excessiva de CS de adolescentes apresentaram diferenças acentuadas entre os pontos de corte analisados.

Downloads

Não há dados estatísticos.

Referências

Carson V, Hunter S, Kuzik N, Gray CE, Poitras VJ, Chaput J-P, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: an update. Appl Physiol Nutr Metab. 2016;41(6):S240-S65.

Olds TS, Maher CA, Ridley K, Kittel DM. Descriptive epidemiology of screen and non-screen sedentary time in adolescents: a cross sectional study. Int J Behav Nutr Phys Act. 2010;7(1):92.

Bauman AE, Petersen CB, Blond K, Rangul V, Hardy LL. The Descriptive Epidemiology of Sedentary Behaviour. In: Epidemiology SB, editor.: Springer International Publishing AG; 2018. p.73-106

Lubans DR, Hesketh K, Cliff D, Barnett L, Salmon J, Dollman J, et al. A systematic review of the validity and reliability of sedentary behaviour measures used with children and adolescents. Obes Rev. 2011;12(10):781-99.

Verloigne M, Lippevelde WV, Maes L, Yıldırım M, Chinapaw M, Manios Y, et al. Self-reported TV and computer time do not represent accelerometer-derived total sedentary time in 10 to 12-year-olds. Eur J Public Health. 2012;23(1):30-2.

Troiano RP, McClain JJ, Brychta RJ, Chen KY. Evolution of accelerometer methods for physical activity research. Br J Sports Med. 2014;0:1-5.

Welk G, Morrow J, Sain-Maurice P. Measures Registry User Guide: Individual Physical Activity. In: National Collaborative on Childhood Obesity Research (NCCOR). 2017:1-72.

Reilly JJ, Penpraze V, Hislop J, Davies G, Grant S, Paton JY. Objective measurement of physical activity and sedentary behaviour: review with new data. Arch Dis Child. 2008;93:614-9.

Sasaki J, Coutinho A, Santos C, Bertuol C, Minatto G, Berria J, et al. Orientações para utilização de acelerômetros no Brasil. Rev Bras Ativ Fís Saúde. 2017;22(2):110-26.

Migueles JH, Cadenas-Sanchez C, Ekelund U, Nyström CD, Mora-Gonzalez J, Löf M, et al. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med. 2017;47(9):1821-45.

Chau JY, Grunseit AC, Chey T, Stamatakis E, Brown WJ, Matthews CE, et al. Daily sitting time and all-cause mortality: a meta-analysis. PLoS One. 2013;8(11):e80000.

Ojiambo R, Cuthill R, Budd H, Konstabel K, Casajús JA, González-Agüero A, et al. Impact of methodological decisions on accelerometer outcome variables in young children. Int J Obes. 2011;35:S98-S103.

Banda JA, Haydel KF, Davila T, Desai M, Bryson S, Haskell WL, et al. Effects of varying epoch lengths, wear time algorithms, and activity cut-points on estimates of child sedentary behavior and physical activity from accelerometer data. PLoS One. 2016;11(3):e0150534.

Janssen X, Mann KD, Basterfield L, Parkinson KN, Pearce MS, Reilly JK, et al. Development of sedentary behavior across childhood and adolescence: longitudinal analysis of the Gateshead Millennium Study. Int J Behav Nutr Phys Act. 2016;13(1):88.

Kim Y, Lee J-M, Peters BP, Gaesser GA, Welk GJ. Examination of different accelerometer cut-points for assessing sedentary behaviors in children. PLoS One. 2014;9(4):e90630.

ABEP - Associação Brasileira de Empresas de Pesquisa. Critério de classificação econômica Brasil - [database on the Internet] 2014 [cited 2018 out 05]. Available from: http://www.abep.org

World Health Organization. Multicentre Growth Reference Study Group. WHO Child Growth Standards: Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: Methods and development. Geneva:. World Health Organization; 2006.

Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):1557-65.

Puyau MR, Adolph AL, Vohra FA, Butte NF. Validation and calibration of physical activity monitors in children. Obes Res. 2002;10(3):150-7.

Vanhelst J, Béghin L, Turck D, Gottrand F. New validated thresholds for various intensities of physical activity in adolescents using the Actigraph accelerometer. Int J Rehabil Res. 2011;34(2):175-7.

Hänggi JM, Phillips LR, Rowlands AV. Validation of the GT3X ActiGraph in children and comparison with the GT1M ActiGraph. J Sci Med Sport. 2013;16(1):40-4.

Romanzini M, Petroski EL, Ohara D, Dourado AC, Reichert FF. Calibration of ActiGraph GT3X, Actical and RT3 accelerometers in adolescents. European journal of sport science. 2014;14(1):91-9.

Harrell JS, McMurray RG, Baggett CD, Pennell ML, Pearce PF, Bangdiwala SI. Energy costs of physical activities in children and adolescents. Med Sci Sports Exerc. 2005;37(2):329-36.

Cain KL, Bonilla E, Conway TL, Schipperijn J, Geremia CM, Mignano A, et al. Defining accelerometer nonwear time to maximize detection of sedentary time in youth. Pediatr Exerc Sci. 2018;30(2):288-95.

Publicado
23-08-2019
Seção
Artigos Originais